

Web Application Firewalls:
Attacking detection logic

mechanisms

Vladimir Ivanov
@httpsonly

/whoam/ i

MSc Information Security (merit) - RHUL (UK)

Web App penetration tester at Positive Technologies (ptsecurity.com)

http://ptsecurity.com

Agenda
1. Introduction

2. Detection logic in WAF

3. METHOD I: Syntax bypass

4. METHOD II: Logical bypass

5. METHOD III: Unexpected by primary logic bypass

6. Takeaways

Motivation
The Standoff:

1. Attackers. Mix of various techniques, rarely understand root cause.

2. Defenders. WAFs protect against automative testing, every vendor
implements additional functionality.

Result: No careful whitebox analysis

WAF workflow example
Stage 1: Parse HTTP(s) packet from client

Stage 2: Chose rule set depending on type of
incoming parameter

Stage 3: Normalise data

Stage 4: Apply detection logic

 Stage 5: Make detection decision

WAF workflow:
Detection logic

OWASP CRS 2

OWASP CRS 3dev OWASP CRS 3rc

PHPIDS
Comodo rules

QuickDefenceWaf

Vultureproject

Waf.red

ShadowD

ŜǘŎΧ

Tokenizer

libinjection

Reputation

repsheet

Score
Builder

NAXSI

Anomaly
detection

HMM

Regular expressionΧ
Χƛǎ ŀ ǎŜǉǳŜƴŎŜ ƻŦ characters that define a search pattern

(?i)(<script[^>]*>.*?)
1 2 3

Sources
500+ regular expressions:

Å OWASP CRS2 (modsecurity)

Å OWASP CRS3dev (modsecurity)

Å OWASP CRS3rc1 (modsecurity)

Å PHPIDS

Å Comodo WAF

Å QuickDefense

43.3%

43.8%

12.8%
XSS

SQL

Other: LFI/RFI,
PHP, OS exec, etc

Results

300+ potential bypasses

aƻǎǘ άǾǳƭƴŜǊŀōƭŜέΥ PHPIDS (E = 1,15)

[Ŝǎǎ άǾǳƭƴŜǊŀōƭŜέΥ Comodo WAF (E = 0,32)

Most άexploitableέ: OWASP CRS3-rc (E = 0,89)

E = Potential bypasses / Total rules

METHOD I: Syntax bypass
Of regular expressions

Enumerate all possible and invent all impossible mistakes

²ƘŀǘΩǎ ǿǊƻƴƎ ǿƛǘƘ ǊŜƎŜȄǇΚ
Level: Easy

!

²ƘŀǘΩǎ ǿǊƻƴƎ ǿƛǘƘ ǊŜƎŜȄǇΚ
Level: Easy

(?i:) 1. atTacKpAyloAd

!

²ƘŀǘΩǎ ǿǊƻƴƎ ǿƛǘƘ ǊŜƎŜȄǇΚ
Level: Easy

(?i:)

^ $

1. atTacKpAyloAd

2. attackpayload

!

²ƘŀǘΩǎ ǿǊƻƴƎ ǿƛǘƘ ǊŜƎŜȄǇΚ
Level: Easy

(?i:)

^ $

{1,3}

1. atTacKpAyloAd

2. attackpayload

3. attackpayloadattackpayloadattackpayloadattackpaΧ

!

²ƘŀǘΩǎ ǿǊƻƴƎ ǿƛǘƘ ǊŜƎŜȄǇΚ
Level: Medium

ReDoS 1.

²ƘŀǘΩǎ ǿǊƻƴƎ ǿƛǘƘ ǊŜƎŜȄǇΚ
Level: Medium

ReDoS

Repetitions: + *

1.

2.

²ƘŀǘΩǎ ǿǊƻƴƎ ǿƛǘƘ ǊŜƎŜȄǇΚ
Level: Medium

ReDoS

Repetitions: + *

Blacklisting wildcards in a set

1.

2.

3.

²ƘŀǘΩǎ ǿǊƻƴƎ ǿƛǘƘ ǊŜƎŜȄǇΚ
Level: Advanced

Non-standard diapasons 1.

POSIX character classes 2.

Operators 3.

Backlinks, wildcards 4.

Regular expressions:
Security cheatsheet

2 parts: theoretical "whitepaper" and practical "code".

Hack regular expressions with regular expressions!

+ SAST: Assists with whitebox analysis of regular expressions in source
code of your projects

+ Low false positives: Focused on finding high severity security issues

+ Opensource on Github!

- Does not dynamically analyze lexis (yet).

https://github.com/attackercan/
REGEXP-SECURITY-CHEATSHEET

Target audience

Not only WAFs use Reg Exp Detection Logic:

Å XSS Auditors

Å Backend parsers

Å Front-end analyzers

Developers, security auditors, bughunters

DEMO

Regex Security Cheatsheet DEMO

^(?: ht|f) tps ?://(.*)$

Comodo WAF:
Att4ck is bl0cked!

(\ bunion[\ s\ \ * \ /] {1,100} ?\ bselect \ b)

QuickDefense WAF:
Attackers are lazy enough

JavaScript checker in real-life web app

JavaScript checker in real-life web app

We can make ReDoS on client-side by supplying specially crafted email as input.

JavaScript checker in real-life web app

We can make ReDoS on client-side by supplying specially crafted email as input.

But what if backend also has same regex for checking?

JavaScript checker in real-life web app

We can make ReDoS on client-side by supplying specially crafted email as input.

But what if backend also has same regex for checking?

EdgeHTML.dll

